本文主要介绍 Flink Runtime 的作业执行的核心机制。首先介绍 Flink Runtime 的整体架构以及 Job 的基本执行流程,然后介绍Flink 的Standalone运行架构,最后对Flink on YARN的两种模式进行了详细剖析。

整体架构图

Flink Runtime 层的主要架构如下图所示,它展示了一个 Flink 集群的基本结构。整体来说,它采用了标准 master-slave 的结构,master负责管理整个集群中的资源和作业;TaskExecutor 则是 Slave,负责提供具体的资源并实际执行作业。

执行流程分析

组件介绍

Application Master 部分包含了三个组件,即 Dispatcher、ResourceManager 和 JobManager。其中,Dispatcher 负责接收用户提供的作业,并且负责为这个新提交的作业拉起一个新的 JobManager 组件。ResourceManager 负责资源的管理,在整个 Flink 集群中只有一个 ResourceManager。JobManager 负责管理作业的执行,在一个 Flink 集群中可能有多个作业同时执行,每个作业都有自己的 JobManager 组件。这三个组件都包含在 AppMaster 进程。

TaskManager主要负责执行具体的task任务,StateBackend 主要应用于状态的checkpoint。

Cluster Manager是集群管理器,比如Standalone、YARN、K8s等。

流程分析

1.当用户提交作业的时候,提交脚本会首先启动一个 Client进程负责作业的编译与提交。它首先将用户编写的代码编译为一个 JobGraph,在这个过程,它还会进行一些检查或优化等工作,例如判断哪些 Operator 可以 Chain 到同一个 Task 中。然后,Client 将产生的 JobGraph 提交到集群中执行。此时有两种情况,一种是类似于 Standalone 这种 Session 模式,AM 会预先启动,此时 Client 直接与 Dispatcher 建立连接并提交作业即可。另一种是 Per-Job 模式,AM 不会预先启动,此时 Client 将首先向资源管理系统 (如Yarn、K8S)申请资源来启动 AM,然后再向 AM 中的 Dispatcher 提交作业。

2.当作业到 Dispatcher 后,Dispatcher 会首先启动一个 JobManager 组件,然后 JobManager 会向 ResourceManager 申请资源来启动作业中具体的任务。如果是Session模式,则TaskManager已经启动了,就可以直接分配资源。如果是per-Job模式,ResourceManager 也需要首先向外部资源管理系统申请资源来启动 TaskExecutor,然后等待 TaskExecutor 注册相应资源后再继续选择空闲资源进程分配,JobManager 收到 TaskExecutor 注册上来的 Slot 后,就可以实际提交 Task 了。

3.TaskExecutor 收到 JobManager 提交的 Task 之后,会启动一个新的线程来执行该 Task。Task 启动后就会开始进行预先指定的计算,并通过数据 Shuffle 模块互相交换数据。

Flink Standalone运行架构如下图所示:


Standalone模式需要先启动Jobmanager和TaskManager进程,每一个作业都是自己的JobManager。
Client:任务提交,生成JobGraph

JobManager:调度Job,协调Task,通信,申请资源

TaskManager:具体任务执行,请求资源

关于YARN的基本架构原理,详见另一篇我的博客YARN架构原理

Per-Job模式

Per-job 模式下整个 Flink 集群只执行单个作业,即每个作业会独享 Dispatcher 和 ResourceManager 组件。此外,Per-job 模式下 AppMaster 和 TaskExecutor 都是按需申请的。因此,Per-job 模式更适合运行执行时间较长的大作业,这些作业对稳定性要求较高,并且对申请资源的时间不敏感。
1.独享Dispatcher与ResourceManager

2.按需申请资源(TaskExecutor)

3.适合执行时间较长的大作业

Session模式

在 Session 模式下,Flink 预先启动 AppMaster 以及一组 TaskExecutor,然后在整个集群的生命周期中会执行多个作业。可以看出,Session 模式更适合规模小,执行时间短的作业。
1.共享Dispatcher与ResourceManager

2.共享资源

3.适合小规模,执行时间较短的作业

Reference:
[1]https://ververica.cn/developers/advanced-tutorial-1-analysis-of-the-core-mechanism-of-runtime/
[2]https://ververica.cn/developers/flink-training-course2/

公众号『大数据技术与数仓』,回复『资料』领取大数据资料包